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MINIMUM INDUCED DRAG IN WING~FUSELAGE INTERFERENCE*

By Perry A:. Pepper
SUMMARY

By means of a general theorem founded on the basis of
Prandtl?s theory of the lifting line, a method is derived
for obtaining the minimum induced drag of airfoils in the
proximity of ideal internal boundaries. The theorem is
epplied to the case of an ideal wing-~fuselage combination
consisting of a lifting line intersecting an infinitely
long circular cylindrical fuselage to determine the effect r

¥
i

of wing height on the minimum induced drag., The case of

ideal combinations with congtant circulation is also con=-

sidered in detail, as it has been treated erroneously in a
previous analysis, The analysls presented here incidental-

ly reveals some errors in previous work on aerodynamilc

theory. ?

INTRODUCTION J.

The approximations of the Prandtl theory of the finite
airfoil (reference 1) permit the general solution of the
prodlem of minimum induced drag of isolated airfoils and
airfoil systems (references 2, 3, and 4). This problem has
also been solved by Lennertz (reference 5) for a particular
1 case of wing-fuselage interference, in which the ideal fuse- 3
lage consists of an infinitely long circular cylinder with
the airfoil in the midwing position. These solutions sug~ ¥
gested a theorem that would solve the problem of minimum At
| induced drag for the most general case of wing~-fuselage in- )
terference, in which any number of wings of any front ele- %
vation and any number of ideal fuselages (infinitely long %
cylinders) of any cross section are admitted. N

amppm .

This note presents this general solution as well as g
’ an important application, the determination of the minimum -

'Based on a thesis accepted by the Graduate Division of the
i College of Bngineering of New York University in partial
fulfillment of the requirements for the degree of Doctor of
Engineaering Science.
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2 NACA Technical Hote Ho. 812

induced drag of wing~fuselage monoplane combinations with
1deal ecircular fuselages and varying wing height. In or-
der to prove the theorem, it was found necessary first to
repeat in a new form certain portions of the basic aerody-
namic theory because of an error discovered in the work of
Trefftz (reference 3). This error does not affect Trefftels
results but its correction is important in the present anal- .
ysis. i -

Accordingly, the first portion of this note deals with
the derivation of analytic expressions for the 1ift and the
induced drag of the finite airfoil and includes an explana-
tion of the Trefftz error as well as that of & certain par-
adoxical statement by Prandtl on the application of the mo-
mentum theorem to the flow about the finite airfoil. The -
rest of the paper containg the establishment of the general
solutlion of the minimum drag problem and its application to
high=wing and low-wing combinations, including the dster-
mination of load distributions., It was found that the in-
terference effeet for comdinations with constant circula-
tion has been treated erroneously by Lennertz (reference 5).
The corrected analysis 1s presented here in an appendix,

The writer is very grateful %o Dr. E. Friedrichs, Pro-
fessor of Applied Mathematics at New York University, for
his guidance and assistance in the preparation of this note.

I
———— T
d

LIFT AND INDUCED DRAG OF THE FINITE AIRFOIL AND

WING-FUSELAGE COMBINATION =

For simplicity, the analytic expressions for the 1ift
and the induced drag will bPe Qerived first for the single
airfoil; the results will then be extended to include the
presence of an ldeal fuselage.

Analytiec Bxpression for Lift Force R

In the first approximation of Prandtll'e airfoill theory,
the airfoil 1s regarded as a lifting line; that is, a lin-
ear succession of elements of small chord, each possessing
a certain profile and angle of attack. Weak loading is as-
sumed and the vortex sheet produced by the motlon of the
elirfoll is regarded as a semi-infinite plane strip with
straight vortex lines parallel to the direction of motion.

e
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In this analysis, the 1ifting line is taken as lying at
rest along the x~axis in an infinite body of fluid that
has a velocity of magnitude V parallel to the z-axis, at
an infinite distance before the airfoil. Both the air-
foil and the flow are assumed symmetrical with respect to ;
the yz-plane. Thee velocity field of the fluid 1s repre- _'“__”_ih
sented by a vector of components, Qx' Qy. ¢2-+ ¥, where i\

o is the velocity potential arising from the presence of
the airfoil and its attendant vortex sheet, ®x 1is

30/3x, &y 1s 3%/3y, and ¢, is 09/dz The assump-
tion of weak loading is equivalent to the inequality:
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Also, at an infinite distance before the airfoil,

o, = Qy =9, =0 (2)

X z

In the application of the momentum theorem to this
flow, the airfoil ie considered enclosed in a very largs
rectangular box of flunid with center at O and with faces
A, B, ¢, D, B, end F, as shown in figure 1. The

ficisgemmi] :_'»::A.J-‘Jz,-.-| et
e =

total upward force acting on the enclosed fluid is bt
N

ry=-L-U p dz dx (3) }

» T

A-B X

where I 1s the 1ift on the airfoil, p is the static *i
pressure of the fluid, and the subscript A4~-B 1ndicates ‘%
that the integral extends over A wilth positive sign and ot
over B with negative sign. The pressure is determined fb
from the Bernoullil egquation .ﬁ
p+Slef+o+ (o, +M7|=kx )

2 x y 2 i

or

d
"

- 1 a8 _ - =] 3 =4
B-2p ¥V =p Vo, -5 (0, +0,° +0.7)  (4)
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where p 1is density and H is total pressure. This rela-
tion is valid everywhere in the simply connected region
outside the vortex sheet.

Under the inequality (1), the last term of eguation
(4) can be neglected, so that

pEE-Lpv -pve, (5)

If this expression is inserted in the integral of equation
(3), it will reduce to

d/:/“ p dz dx = - p Vd/t/n @, dz dax E
YA-3B Y Ya-B . L
= - p V(/' P dx —f o dx) (6>
1-2 3 .

o e

where 1, 2, 3, and 4 are the edges of the box shown 4in
figure 1. 1If the faces C and D are removed to gz = - o
and z = + o, respectively, the velocity potential @ ag-
sumes the same constant valune on 3 as on 4; and when the
other four faces are removed to x = * o, y = * ®, re-
spectively,

L/i/ﬁ p dz dx = - p V~/n ® dx = - p V<j[‘® dx
Yi-B Y1 -2 1 N
+f@dx-[@dx+f¢dx)=pr@dx (7)
Js 5 & L

where the added terms, d/1 ¢ ax andLZn ® dx, vanish
. 8

because dx vanishes on the edges 5 and 6, and where the
last integrel sign and subscript denote integration around

an infinitely large contour in the counterclockrise sense
in the plane D at z = + o, '

n
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|
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The total upward force, Fg, 1is egual to the time

rate of change of the Y-coumponent of the momentum of the .
enclosed fluid: _ _ -

Fy = d My/dt (8)
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As the flow is stationary, the y-component is just the
amount transported per unit time through the sides of the
box, with outgoing momentum taken positive:

d_-y- ff P o, (2, +V)dxdy+ff pcbadxdz

D.C A-B

U/PJ p Q d, dy 4z (9)

F-E

O0f the six integrals on the right-~hand side, the last four
may be neglected together with the terms in &, 1in the

first two, from the inequality (1). For the infinitely
large box, the integral taken over vanishes as well,

and
aM
E__ =PV ¢, dx ay (10)

where the integration extends over the entire XY plane, D,
at %z = + w, which is regarded as bounded by the trace,
T, of the vortox sheet,

The analytic expression for L is obtaincd from equa-
tions (3), (7), (8), and (10):

L = - P v‘j/;/“ ¢y dx dy - P V‘j[>¢ dx (11)
D (o]

Phis result can be transformed by intogration by parts:

- P Y J/l/p éy dx dy = - P V‘j[‘Q dx + P VL/p ® ax (12)
T

so that R *®

L=—pV;f<1>d.x=PV fru (13)
(¥ (&
T L
vhere L and R represent tho left and the right edges
of the vortex sheet, I'(x) 1is the distribution of circula-
tlion along the airfoil span, and where the relation,

P = @a - @b (14)
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has been used, &, Dbeing the veloclty potential on the up_”uﬂ
per surface of the sheet and &; that on the lower sur-

face. Eqguation (13) represents the Kutta-Joukowski law
for the finlte airfoil.,

In his application of the momentum theorem, Trefft=z
(reference 3} obtained the result (13) but on the basis of
two omlissions whose effects cancel, He first omittod the
contribution of tho pressure forcos to the 1if% in oqua-
tion (7) and thon omitted tho corrosponding integral in the
partial integration of eqguation (11), This error-did not
affect his regsults for he used only the form given hero by
equation (13), In the onsuing analysis, howover, the prop-
or form of cquation (11) is of decisivo importanco,

Analytic Hxpression for Induced-Drag Force

i I I-ini..ilLJ S e

The analytic expression for the induced drag is ob-
tained in a similar manner by applying the momentum theo-
rem to the z-component of forces, except that in this case
the second-order terms must be retalned, A4Again, attention
is first restricted to the finite box enclosing the air-
foil, The force in the z-dlrection acting on the enclosed -

fluld is
Fyp = -~ Dy - L/ﬂb/ﬂ p dx dy (18)
D.C '

where D; 1is the induced-drag force acting on Eﬁsnéfffdilmv";ji;

By the use of equation (4) this expression can be written
as: ST e

F, = -.D; + -:- f f (@2 +®y2+¢za+av ®,) dx dy (18)
Le

The z~component of momentum transported through the sides
of the box per unit time is:

L/hb/n p (@ +V) dx dy + U/ﬁu/ﬂ p (@ +V) @ dx adz o

A-B

ff P (®,+V) &, dy dz i -(17)

pr wwb.
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Canceling the terms in Va. this expression 18 conveniently
rewritten asa

au g
Tﬁi = pw ¢, ax dy+I[ ¢, 2y ax dz;l-h[/] ¢, ¢ dy dz)
D-C

A-3B P-B
+97ﬂ Q,dxdy+pv<—/:[ ¢, ix 4y
-G -C
+UZ7P Qy dx dz-+J[ZP ¢, ay dz) (18)
A-B “F-B

The quantity within the last parentheses 1s,

Ll7n %% as =LZZ7qdiv grad ® dx dy dz = 0 (19)

from the continuity of the fluid flow, in which the surface
integral extends also over the airfoil surface where 93/dn
vanishes identically. In this expression 4S5 1s an ele-
ment of surface and =n 1is the coordinate normal to the
surface of integration. Then from equations (16) and (18),
the relation

Fg = dMg/at (20)
reduces to:

Diﬁ%l[ (@2 + Q:- ®,”) ax ay - pﬂ &, 0, dx dz
~C

A-B

- pﬂ Qz Qx dy dz (21)

B
When 2ll the sides of the box are removed to infinity,
. = _ =90, =0 on ¢

¢, =0 on D
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so that the integral)l extending over ¢ <vanishes. While
the last feur integrals are nominally of the same order
L as the first, because the sides A, B, E, and F are now
infinitely distant from the vortex sheet, the last four in-
. tegrals are actually of higher order and can be neglected.
. Hence,

+ . —_—

g Dy = %f (@xa + an) dx dy (23)

where the integration extends over the entire vertical
plane at g = + o bounded by the trace of the vortex sheet,

Lt Ideal Wing-~-Fuselage Combdbinations

28
P In order to treat the problem of wing~fuselage inter-
: ference, the fuselage is ildemalized in a manner due to
_.L Lennertz (reference 5). The fuselage 18 taken as an infi-
1 1 nitely long cylinder, extending from z = - @ to0 1z = + o
s of any cross section, with generators parallel to the z-
" axis. The airfoil is taken as & 1lifting line lying in the
! xy-plane. The vortex sheet is taken as the cylindrical sur-
I face lying between 2z = Q0 and z = + oo, passing through
, the 1ifting line, with generators (vortex lines) parallel
ﬁ_ to the z-axis. Oonsequently, with such an ideal wing-
|
1

fuselage combination, the contour bounding the plane D

at 2z = 4+ ® now consists of two parts: The cross section
of the fuselage, denoted henceforth by the letter F and
the trace T of the vortex sheet. The entire contour is
designated C.

o The reason for this particular choice of fuselage

I shape is the following one. If the vortex sheet is re-

e flected in the plane, 2z = 0, the velocities of the re-
sulting flow in this plane will be twice as large es those
arising f;om the original vortex configuration., But the

resulting flow is that induced by an infinitely long vortex ’

iy

LS A O e - N W
R T

sheet and must be exactly equivalent to the two-dimensional
flow existing in the plane D at =z = + o, Thus, the x-
and the y-components of the fluid veloecity in the plane =z =
0 have just one-half the values of the velocity componentsg
at the corresponding points (those with the same values of

x and y) in the plane at 2 = + ©, In particular, the
downwash velocity at any point on the l1ifting line will be

. one-half the downwash velocity at the corresponding point

{ on the trace of the vortex sheet 1in the plane D. PFor any

] other type of fuselage, the vortex lines will not be straight

PE)

bt

A

Au




NACA Technical Note ¥No. 812 9

lines; so that in general the trace in the plane D has
neither the same shape nor the same length as the lifting
line and the downwash at the wing now becomes a complicated
function of the downwash at the trace. In this way, the
“two-dimensional® character of the prodblem is lost.
]

Evidently, the derivations of equations (11) and (23)

for L and D3 are unaffected by the presence of such

ideal fuselages. Then

-p VU/:/q¢y dx dy - p V /nQ dy
2 Ceo
-p V‘/ﬂé dx
v
=-pvg{<bdx—pv“[¢'dx (24)

In general, neither of the last two integrals vanishes, so
that the 1lift on such a wing~fuselage combination consists
of two parts -~ a 1lift on the wings and a 1ift on the fuse-
lage. The 1lift on the fuselage arises from the aerodynam-
ic pressure distribution over the cylinder surface and is
to be considered as induced by the presence of the wings,
because the 1lift on an isolated fuselage of the type con-
sidered here is zero. For fuselages of this type, these
induced pressure forces are normel to the cylinder surface,
that is, parallel to the xy-plane, and can only contribute
to the lift. For any other type of fuselage, the resultant
of the induced pressure forces on the fuselage will not be
parallel to the xy-plane, in general, so that these forces
will contribute to the drag of the combination as well.

L

Lift and Induced Drag in Terms of a Complex Variabdble

It is useful here to transform the expressions for I
and D3 in still another manner so as to employ the com-

plex variable x + 1iy. The flow in the plane D 1is two-

dimensional and the stream function, V¥, satisfying the
equations,

8% -
ox

<l

..
-y 55 (25)

[l .
-
i
-
A
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) e
>
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can therefore be introduced, Then

L=-pvf‘/‘®ydxdy-pv‘{®dx
=pvv_/’:/‘\llxdxdy—p7b{¢dx
—pvf\l!dy-p‘7£ (@ ax - ¥ ay)

i
FOSY R TN

But c -—?ﬂ
i
[ S V¥ dy = v ay + ¢ ¥ ay
ks c F T
351 Ags P is a rigid boundary, it must be a streamline of the
}'w flow in the plane D, so that -
™1 - = -
ij : ¥ = const. on F =
§jr1 and e =
L
}j- i . SoTTil
" oo t
‘aizi; - - B =
4. As the vortex sheet contains no sources or sinks, Vv is 2
;ﬁ continuous in crossing T, so that : §
2 —
i f Y dy = 0 E
e T L
f Thus the expression for the 1ift reduces to )
Iﬁ; L==pV é (® ax ~- V¥ dy) '
[
R

=-p 7V R.P.[ f(g) az (26)

where the symbol R.P. represents the real part of the
quantity following it (in general, complex); 2z now repre~-
sents the complex variable, =x + iy, and f(z) 1s the
flow function (complex potential) of the two-dimensional
flow in the plane 31,

oL ore wma
T T e 0

Lk L dc

——
LR

£(z) = @ (x,7) + L ¥ (x7) (27)

QeI
T
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The expression for D; can also be writtem directly
in terms of V¥ or of f£(z):

D, = %ff(\lf: +¥.°) ax ay
a8
= %;/:/q lf'(z){ ix dy (28)

The expressions for L and Dy 1in terms of (=)

are valid, of course, when no fuselage ls present and may
be regarded as the analogs of Blasius' formulas for the
infinite airfoil. The results of this analysis as given
in equations (26) and (28) are not originel; both expres-
sions have been obtained by Prandtl (reference 1) by some-
what different considerations.

Prandtlt's Paradox

Prandtl (reference 1) concludes that the applicatton
of the momentum theorem to the flow about the finite air-
foll yields different results for the contribution of the
pressure forces and the momentum transport to the 1lift,
depending on the order in which the faces of the box are
removed to infinity. A rigorous analysis shows that this
general concluslon is correct but that his precise state-

ment is entirely inaccurate. In the notation of figure I,
his statement 1s:

#I1f an airfoil, situvated in a medium unbounded in
all directions, is enclosed in a control surface in
the form of a parallelopiped, the application of the
momentum theorem for steady flows yields the follow-
ing results, If the bounding faces, 4 and B, C and
D, &eare first removed to infinity, and then the faces
B and ¥, the momentum theorem ylelds & momentum
transport arising from the vortex sheet, which is equal
to the 1ift, If the faces, 4 and B, 2B and ¥, are
first removed, and then the faces, ¢ and D, the vor-
tex sheet contributes nothing, bHut the momentum trans-
port arising from the bound vortices yields the 1ift.
Flnally, if C and D, B and P, are first removed,
and then 4 and B, +the momentum transport vanishes,
and the 1ift arises from the pressure forces. In
other cases, both the pressure forces and the momentum
transport are obtained.!
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This statement 1s inaccurate for two reasons. The
removal of the faces A and B to infinity does not elimie
nate the contribution of the pressure forces. This error
was also committed by Trefftz, as indicated above. The
other reason is that the momentum transport, in any case,

Y cannot be separated into contributions from the vortex sheest

[N and the bound vortices. Tor example, considering the momen-

i?' tum transport across E and T, L/i/p P ¢’ @x dy dz, an '
L - =

e

application of the Biot-Savart law shows that &, arises
from the vortex sheet and Qy arises from both the bdound
. vortices and the vortex sheeat.

Thus, attention can be restricted to the contridbutions

of the pressure forces and the momentum transport. From
the analysis presented, it 1is c¢lear that once the contri-
bution of the pressure forces has been transformed into
the line integral of equation (7), the faces A, B, C, E,
and P can be removed to infinite diastance from the air-
foll in any order, for in the limit they contribdute noth-
ing to the 1lift expression. Then the expression for L

BRI o -
LT

—
]

T e

e Wi

becomes: ;.

ME T _‘—.—-———:’e
- L =-9p Vu/t/néy dx dy - p ¥V é ® ax (29) }
"[ . .
N where now the plane of integretion D 1lles at any distance,
o 2z >0, from the l1ifting line. Here the double integral i

_E A represents the contribution of the momentum transport to
i the 1ift and the contour integral represents that of the
! pregsure forces.

1A order to find the ratio of these contridbutions, it
is necessary to employ an exact expression for the velocity
potential &, The vortex sheet is mathematically egquivalent
to a dipole layer, with dipole strength equal to the circu-

R T ]

ey
N e T UE
e -(.-mw ~w

! i latlon. Hence, by the employment of a well-known formula
prd - of potential theory,

b
IR 4
2

diae

e
—r——

'
g i e i

P o
o (x'Ysz) = - Z];'/Z/’ r (i) sa; [(x"i)a
. "";'

-b o
+ y2 + (z-i)a] a¥ ax (30)
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where b 1is the semispan of the wing, and TI'(x) 1is the
distribution of circulation along the span., This expres-
slon for the potential has been furnished by X, Friedrichs
and is much simpler than the Fourier integral expression
derived by von EKarman (reference 6), If equation (30) is

-

intograted with respect te 2

I

L
¢=}2‘®1+%¢3

where

b
1 = =2 aq ¥ .=
e, (%) = 5= M=) vy [(x-x)® + ¥y*°] ax (31)
b
is the potontial of the two-dimenslional flow at 2z = + o,
and
b
Pz (x,¥7,2) = = rx v {((z==X)° + 7°] =
; ~b - - _
. [(x-3)% + ¥° + 2°%] "az (32)
5 Bvidently,
.S g —> 9, a8 z—> + @
¥
‘E First, consider the plane D at an infinlte distance B
s from the airfoil, Then & = ®,, and =
: b I
‘ ‘fn P dx = 5ELfPL/P M) ¥y [(x-X)" + 5 1 dx dx L;
; oo e -b ) r"E
ﬁ Then [t.
ﬂ
—.38 a,~*t LB i3
vy [(z=x) +y ] dx—s -7 as [x24y%] —> o ib
F so that N b L ‘Pc
- P VLZT ®dax=357°P Vu/n (%) dx = 5 L Iy
~b &
i
P and from egquation (29) i
e
L
=1 Y
—Pfocbydxrly—zL !
,1'.-\.'
f
i ¥
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Now let D ©be at any finlte distance =z from the
airfoll, Then,

- P VL%n ¢ dx = - % p thn ¢, dx - % P vb%ﬁ ¢y dx
[=-] [--] oo
1 1
(=]

But for finlte 2z,

%
f@a dx —> 0 as [xa-;-ya]_-;-ea

gso that in this case,

= X
- P Vi/P b dx = 1 L

o . _

r e
- P VL/éJ/\Qy dx 4y = Z L

Thege distinct results yield the conclusion that if
the faces A and B, B and F are first removed to infin-
ity and then the faces € and D, the pressure forces con-
tribute one-guartor of the 1ift and the momentum trans-
port contributes threo-quartors. If, on tho othor hand,
the facocge O and D are first removed to infinity and then
the faces A and B, E and F, in elther order, the pres-
gsure forces contribute one-half the 1ift and the momentum:
transport contributes one-half, In other cases, one of
these two results will be obtained, depending only on
whether D  is the last face to be romoved.

Mathomatically, this poculiar rosult arisos from a dis-

continuity at =z = + © in the expression, J{T ®(x,y,2) 4x.
[=-]

Physically, it signifies that any distinction between the
contributions of pressure forces and momentum transport fo
the 1ift is an drtificial one, at least when the airfoil
is in an unbounded fluid,

o
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MINIMUM INDUCED DRAG IN WING-FUSBLAGE INTERFERENCE

The problem of minimum induced drag consists in minim-
izing the induced drag under the condition of given 1lift.
This is an isoperimetric problem in the calculus of varia-
tions, which consists in determining the analytic function,
£(z), which makes

D, = % d/:/q‘fi(zﬂ 2 dx dy

a minimum, with

L=-p¥ R.P.U/nf(z) az
(v 2]

given, or in short,

8D; = 0, 8°Dy >0, with 8L = 0 (33)

In the case of wing~fuselage interference, this prodblem
containg mixed bPoundary conditions, which are conveniently
expressed in terms of the stream function, V. The fuse-
lage cross sectlion is a rigid boundary of the flow in the
complex z-plane, so that ¥ 41is constant on the cross sec-
tion, ¥; the trace of the vortex sheet contains no
sources or sinks so that ¥ 1is continuous in crossing the
trace. Hence, the boundary conditions are:

¥ =0 on ¥ (34)
¥

a

‘l’b on T (35)

where the subscripts a2 and b refer to values directly
above and below the trace, respectively.

This problem has been solved by Lennertz (reference 5)
for the particular case of a midwing combination with cir-
cular fuselage by employing the method of images which, in
fact, is available for this one case only. By means of a
generallization of Lennertzts result, the solution of the
g€eneral variational problem contained in equation (33) and
the boundary conditions of equations (34) and (35) has been
found to lie in the following theorem.
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THEOREM: The analytic function, £(z), which minim-
1zes the induced drag with given 1ift and satisfies
the boundary conditions, is the sum of two analytic
functions: ohne is the flow function of the downward
potential flow about the fuselage boundary, the other
ig the flow function of the upward potential flow
about the entire bounding contour, C, consisting of
the fuselage cross section and the trace of the vor-
tex sheet, where the two flows have equal and oppo-
site velocities at infinity.

To prove that equation (33) is eatisfled by the flow
function, £(z), advanced in the theorem, let

£(z) = £3(z) + £2(z) ) '''' I

or
o + iV = (&,+0,) + 1 (¢1+wg)’{

where £,(2) = §, + iy, is the flow function of the down-
ward flow about the fuselage cross section, and _ga(z) =
$, + 1y, 1s the flow function of the upward flow about
the entire bounding contour €. -These functions satisfy
the boundary conditions, for

Y, =¥, =0 on F (37§J-
Vg

O on T (z8)

and, from the regularity of f,(z) outside ¥,

2y, (§w1> |
Wla = Wlb and <?ﬁ;»a == \35/p °F by (29)

where U 18 the direction normal to the trace and pointing
into the fluid reglon. -

Now | -‘i'
L=-pvf(<1>dx-\lfdy) :

so that @ ;
6L=-9V£(8<I> dx - §V 4y) (40)

i

i
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Also, B :
p 2 a
D; = EU/:/G(Wx + Yy ) dx dy
so that

8Ly = Pff(‘l’x S + ¥, 8Vy) dax ay
'pffwlr Wy + \ply 8Vy) dax dy

+ PJ/:/H(ng 8V + Wéy 8Vy) dx ay (41)

Using Green's theorem:

8§Dy = - pL%T &y %gi ds - ngp 8V g%l ds

c
—Pf\llagag(ﬁ\ll) ds—-Pf\lfagag(a\lf) as  (42)
(8] [«-]

where VP 1is the direction normal to the bounding curvses
and polating into the fluid reglon, and ds 1is a line ele-
moent of the bounddnz curvo, But

\
f&W%ds:fawgvlds+{swg¥£ds

c

On P, b8V wvanishes by virtue of cquation (34)., Tho soc-
ond integral is

[T [E, -G ]
L

from equation (3%), Also

f\l!aa—au-(ﬁ\ll)dsr-o
c

from equation (37). Honce, oquation (42) reduces to:

-

LR R ) -1(-'

:'P’:-»—-.-.a--.u-—.,
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- 2 d
8§Dy = - p[ ‘_6\1! -a-‘%‘l- + V2 53 (6\1!)} ds (43)

For the normal direction chosen here for tho infiniltely
large contour, the Cauchy-Riemann equations are:

30 _ oV, 22 _ _ av | '
ds 3v 3V ~ Ods
so that

5Dy = - pf [a\u a®; + Va a (am] (44)

Integrating the second term by parts,

.- * ,m

e From the definitions of f,(z) and £5(z) given in the
R o theoren, :

: 'i fl(Z),——>icZ, @1—5— -C¥ o \‘[’1 ~3> CX

[ﬁ; 88 2 —>0 (46)

£, (2) —> -icz, &, —> cv, Yy, — -cx

where ¢ is a real, positive constant with tho dimonsions
of velocity, Brvidently, the general veloclty voetor,
(Ds By $,), 1s proportional to ¢, so.that from the in-

W) 3
I LA
f

—d .| o

U Jus oy S S T RO %)
T
AR

equality (1), e

E.'itl ’ c < < Y (47)

ﬁ:_ From an ingertion of the limiting values of &, and VY,

%;} in egquation (45)

p oA

-,’,; i SDi = = P Gf (8@ idx -~ 8’*1’ dY)

lﬁ;- “oo e T
2 = & &1 (48)
el

from equation (40), If the varlations are restricted to
those that make 8L = O, in accordance with oquatlion (33),
the function f(z), advanced in the theorem, makes

—m—
4

.

T S

SR T
[P

AT

8Dy = O (49)

that ls, makes Dy an extremum,

Y.
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In order to show that the resulting Dj 1s really a
minimum, let

Di [wt\lf'] = %f/(¢x \I"I' + Wy \l’y’) 'd.I dy (50)

where Y and ¥' are now any two functlions satisfying the
boundary conditions given in equations (34) and (35). Then

by [¢+6\lr.ﬂl+8tlr] = D3 [\%f.\l!] + 2D3 [\y ,61[1] + Dy [6\!1,8\!:] (51)
In this equation, let .Y be the stream function of £(z),
the flow function of the theorem, and &8V any variation of

Vv that satisfies the boundary conditions and makes 8L = 0,
Then, from oquations (41) and (49},

i
2D3 I_w. 5\1;] =8 Dy =0 (52)

so that
Dy [waw.ww] = Dy [\m] + Dy [sw.aw] > Dy [w.w] (53)

as Dy | &Y,V is nonnegative, Henco D3 1is a minimum
for tho-given- V.

A similar argument shows that this V¥ (and consequont-
iy, £(z)) is unique %o within a constant, For suppose
any other stream function V] satisfying the boundary con-
ditions also minimizes D3, so that

;

Dy [\!f‘ .\lf'] = Dy [\lt ,\lIJ (54) K

Then the difference, &Y = ¥' - V¥, 1is an admissible varia- | E_
tion, and !
- .\Lj

vy [wrowt ] = oy [w,¥ ]+ 00 [owiov] ¥

L 1

so that from equation (54) %
r H

D 8¢, & = 0 o

o] 4

and
8V = ¥' - ¥ = const, (55)
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where the last relation follows from the positive definite

character of the form, Dy [V,V¥]

Finally, it is possible to derive a simple relation
batwoen the minimum induced drag and the (given) 1lift,

Roplacing 6% and &Y 4in equations (40) and (41) by &/2

and WV¥/2, respectively, &L is replaced by IL/2

8Dy by Dy. Honce, cquation (48) is replaced by the rela-

tion,

The thoorem eostablishod is significant in several re-
spects, Firet, it is quito general in that it applios to
any combination whatsoover, provided only that the fusolage
is of the type specified. For it is clear from the mathe-
matical analysis that the combination could consist of any
of any nunm-
ber of wlings, of any front elevation, and lying in different

number of fuselages, each of any cross section,

pPlanes,

and

(56)

Second, the theorem contains all the previous solu-
tions in tho problem of minimum induced drag as special

casesg, For when thore is no fuselago, the downward flow of

the theorem reduces to a simple rectilinear flow and the
upward flow is Jjust that around the trace of tho vortex

shoet (of which several may be present), This case is the
woll-known condition of constant downwash derived by Munk
(roferonce 2) and used by him and othors to find the mini-

mum drag of isolated airfolls and systoms of airfoils (ref-
eroncos 1 and 4), As previously mentioned, the solution
obtained here was used by Lennertz to find the minimum drag
of a particular ideal combination, De Haller (reforence 7)
has found the minimum drag of an airfoil in proximity to

the ground, This solution can be immediately established
by means’of an obvious extension of the preceding theorem

to include the presence of external boundaries,

The theorem reducos the ontire problem of minimun drag
to tho determination of tho required flow funection,
is, a problom of conformal mepping. For a given type of
conbination, the detormination of the required napping is
gonerally a difficult task, Onoc case of particular intor-
cst can Po solvod aoaxplicitly, namoly, the high- or the low-
wing monoplane conmbination with circular fuselage,
rost of this papor is limited to the analysis of this case

and sonc related considerations,

- . m—
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HIGH- AND LOW-WING MONOPLANE COMBINATIONS

WITH CIRCULAR FUSELAGE

Only the high-wing combination wlll be &reated in de-
tail here, for, as will be shown later, it is exactly equiv-
alent in the thpory to the low-wing combination. The ideal
combination 1s shown in figure 2. The fuselage is an infi.
nitely long circular cylinder with axis parallel to 032Z.

Phe wings (lifting lines) lie along the X axis. The fuse-
lage radius is taken as the unit length, and the semispan
(distance from wing tip to plane of symmetry) is called Db,
like all other lengths appearing here, b is a nondimen-
sional gquantity, Such an ideal combination is the first

approximation to an actual monoplane combination with a
long fuselage and wings of chord length small comparcd with
both the span longth and tho fuselage radlus,

Tho bounding contour in the plane at 2z = + % con-
sists of a circlo reprosenting thec fuselago cross sectliom
and two horizontal lincar sogmeonts (double lines) repre-
senting the trace of the vortex sheet, as shown in figure
3, Let B m be the angloc betweoen tho positive Y axis and
the.-radius to the projection of the wing root on this
plane, as shown. Then the height of the wings above the
fuselage axis is cos B . '

The Conformal Mepplng

In order to find the minimum induced drag in terms of
the given 1ift, as well as the various related aerodynamic
quantities for this combination, it is necessary to find
the flow functions defined in the theorem of the preceding
scction, The first of theso, £ (z), ropresents the down-

ward flow about tho fuselage contour (the circle of fig, 3).
This function is:

£,(2) =1 ¢ (z + 1 cos Bmw - —3 tos 5 ﬂ) (57)

The flow function, £5(z), of tho upward flow about the
whole contour of figure 3 is quite complicated but can be
obtained i1mplicitly by conformal mapping.

The analytic function,
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F_“i-ﬂh.l 'Jla. I Tb S

N

(58)

-ll

1 in
¢ = log Zz + 8 B m
2 gin B m z - siln 1

oS .

|
v g ket L.I_..,H..,...._... [T 3 \‘

mnaps the exterior df{ the whole contour in the z-plane on

a region in the {-plane bounded by straight lines, as shown
in figure 4, The point at infinity in the z-plane is
mapped on the origin of the {-plane, and the points E and
A of the {-plane have the coordinates:

.i..." ‘._'-. —
-t ¢t = 1 log b + sin‘Bw (59)
2 sin B 1 £ b ~ sin B w

" This region of the {-plane is now mapped conformally

tﬁﬂ"* on the upper half of a conmplex t-plane by the Schwarsz-

{18 Christoffel method, as shown in figure 5. The point G of

tho {-plene is mapped on the point at infinity of the t-

I plane, and the other two arblitrary points on the real axis

LV- of the t-plane are chosen as the point O labeled C and

b - ! the point +1 1laobeled D 1in figure 5, The differcntial

: = equation is: ' 2
2 2 : -

Lok 2 ta - dé (60)

at (t - n%) (¢ - 1)

where d and n are the coordinates of B and F in the
t-plane, Integration of equation (60) and evaluation of
the constants ylelds as the mapping function,

P .

LT

NI 1 n+ t t+1] -
gl = —_—— 1 + (1 - 1 81 :
! : 2 sin B 7 [B °€ n -t ¢ B) log t -1 (61) :

he's
.“Il
]
I

.}(” wvhere the parametors 4 and n depend on b and 8
through tho relations, -

Riay
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P + ein B 1 n + 4
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inary axis of the t-plane, t = 1 8, where s; satisfies
the relation,

n = 83 cot Eﬁ—l ~ 1) cot * 81] (64)

Equations (62), (63), and (64) permit the evaluation of the
nathenatical parameters 83, =n, and 4 1in torms of the

physical parameters, b and §.

Tho flow function in the t-plane corresponding to
£{z) 1is:

2 8in B 17 1

Wr(i sy) t2 + 8,% (65)

Fa(t) = 22 [2(8)] =

where

2l (s$)sin Bu

N(t) = -1 (66)

The Minimum Induced Drag

The minimum 1induced drag of the comblination is given

by
- S
Dinin = 27 ©
where
L=-pVB.P.f f(z) dsg
(o]

- pV R,P, bfh £,1(z) dsz
oo

- § V R.P, U;qua(z) dz
(=]

From equation (57)
- PV R'P'L%n f1(z) dz2 = « 83n PV ¢ (67)

[=-]

™o sccond intogral in the oxprossion for L is ovaluated
by transforming it into the corrosponding iantogral in the
t-plane,
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- PV R.P.J/wfa(z) dz = P v:%q Fp (8) 21 (%) % (68) -
By oxpansion of ¥y (t) and ='(%) about t =1 s, one &
finds o B —
r -

OV R.P. 0  Folt) mt(t) at B - E
dt=151 o -

ove 2 |22 B T r[““(iﬁl)] 2 [N"'(isl)]4. 1 (690 E

=T C N (181) X1 (18,0 3 LNT (18,7 J 8,° E

vhere N(t) 1is defined by eguation (68). Addin~ edqusations
(67) and (69),

L = 1mPVe/M(b,B) ~ (70)

57} where
) N PR g L EY
'}'aﬁ M(b,B) Nt (is;) N'(is,)

A _ 2 [N‘” (is3) ].+ _23{} -2 (71)

3 LE' (is,) 8, 3
Then ‘E

Dy, = mPe”/2U(Db,B) (72

“'3 Eliminating ¢ between equations (70) and (72), fl 
- o IR | |
L : 3
D = == M(b,B) (73)
min op P ¥

e ™
-

* \‘,t,‘\’. T " la " .

Equation (75%) expresses the dopendence of the mininmum in- :
duced drag of the combination on the given 1ift in terms E
of the nondinensional lengths used in this section, The T
corresponding dimensional expression 1s:

La

T O e e B

W% Y ks Men

LWl s

[—
5 -ﬂ"‘u“'llc B B

Ut Dinin = or b V° R ¥(®,p) (74)
Lgi;' where R is the fuselage radius,

}E§ For given lift, Dy = varios divectly with M(b,B). E
‘EH This quantity has boon evaluated nunerically and is shown

i -

oot Il-m l- I I I
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in figure 6 as a function of tho wing helight, cos B ,
for several values of b, The values for negative wing
heights have beon found from a rolation to be derivod later

in this scetion,

The Intcerferonce EBffocct .

The cffect of the presenco of tho fuselage upon the
ninimun induced drag can be found by conmpering that of the
conbinations with that of an isolated lifting line of the
same span length and total 1ift., With the use of nondi-
nonsional lengths, tho nininun induced drag of tho isolatod
wing 1is:

2
Dy = L (75)
nain 21 PV b

Henco, the relative increaso in tho nminipun induced drag
of thce combination as compared with that of the isolated

wing is:
]
D - Di
i. p3 i 2
I(b,p) = —2iB 222 = v M(D,B) - 1 (76)

]
Diuin

The dependence of this "interference coefficient" on the
semispan D and the wing height cos B 1is shown in
figure 7,

The Low-TWing Comvination

The case 9f the low-wing combination is treated by
considering a combination of semispan b and of wing
height - cos B 1w = cos(l ~ B) e The minimizing flow
function for this combinatlion represents the superposition
of the downward flow about the fuselage eross section and
the upward flow about the entire contour in the z-plane.
When the axes are rotated through 180°, this combination is
transformed into the corresponding high-wing combination of
semlispan b and wing helght cos B it while the minimiz-
ing flow function is transformed into =~ £(z), where
f(z) 1is the minimizing flow function for the high-wing
combination, Hence, all the relations previously obtained
are equally valid for tho low-wing combination and, in
particular, this argumeont ylelds the important resulta:
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(v, B) = M(b, 1 -~ B)

(77) :
I(b, B) = I(b, 1 = B) :

- %

These relations have already been used in plotting figures N
6 and 7. N ¥
The complete equivalence of high-wing and 1oﬁ-wing £

combinations in this thoorctical filirst approximation is not -
rofloctod in oxperimental results (references 6 to 13), in
which the presence of the boundary layer creates a funda-~
mental difference between the two types of combination.,

For unfilletod combinations, the oxperlmoents show that the
drag charactoristics of high-wing combinatlions are much
suporior to thosc of the low-wing type but that the 1ift
characteristics are nearly the same, tho high-wing combina-
tion boing only sllghtly superilor,

i MR

LOADING PROPERTIES OF WIHNG-FUSELAGE COMBINATIONS | =

As indicated in connection with equation (24), the
1ift on wing-fuselage combinations is composed of a 1ift B
force on the wings and a 1lift force on the fuselage, In . -
this section, the distribution of these loads over the com- ¥ 3
bination width is determined and, in particular, the effect
of changes in the wing height is investigated, Hxcessive )
calculations are avoided by troating in dectail only the A
case of tho oxtromo high-wing combination. (B = 0); tho .
midwing case has already been treated by Lennertz (reference
5), but some considoratiom is made also of combinations with

diuten -
m

vy .
rem -

N B

e intormediate wing heights, This treatmont automatically in- - é
?ﬁ cludes tho casc of the extreme low-wing combination (B = 1), ) |
it T -
I - =
s'é?* * Determination of Lift Distributions -

[ LR -
'Lﬁ?“ Tho bounding contours in the z-plane for such an ox- B
hE; trome high-wing combination is shown in figure 8, Fron =

%2 oquation (24), L =
nﬂ.\. —
ki, - fe — e e e -
_Eg_,_g L = Ly + Ly 5

where
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ie the lift on tho fuselage and

T

is tho 1ift on tho wings, Writing ¢
@ = 5 Ql + @2

whero &, and &, arec the volocity potontials of the down-
ward and the upward flows of the thoorom, reospectively,

Ly = Iyp + Doy

L1F=-’ PV‘{QJ_ dx

F

The distribution of 1lift across the fuselage width is thoro-
fore dcfined by the cguation:

whero

aL 4L 4L
F 1F 2F
i " i T o™ (@1a-%p) + PV (Z2a-®2p)

yvhere dLF/dx is the 1lift por unit length in the x~direction
and the subscripts a and b refer to the top and the bot-
tom sides of the fuselage section. The guantities, dL;p/dx
and dLop/dx may bo regardod, for the purposes of this sec-
tion, as partial 1ift distributions arising from the sepa-
rate flow functions, f,(z) and £;(z). From oquation (57),
with p = O3

£,(z) =1 ¢ <z 4+ i - 1 i)

z +
g0 that
®,0=- 2 /1 -x°, &y =+2c,/1-x
and
aly g
iz + PV (90 - &)

)}

-4pVvVec /1 -x% <1<x<1 (78)
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This oxprossion represents an elliptic distribution of neg-
ative 1ift across the fuselage width or, so to speak, the

downward flow gives rise to a downward thrust on the fuse-
lage,

In order to find dLgp/dx, the distribution of s
over the fuselage cross scction must be determined, This
distribution: of potential is obtained from the mapping
process described in tho preocodling section by taking the
limit B = O, In this way, it is found that the function,

't = 1/= (79)

maps the exterior of the contour in the z-plane on a fegion
in the {-plane bounded by the straight lines shown in fig-

ure 9, This regiom is mapped on the upper half-plane shown
in figure 10 by the function '

1 [1 £ - 1 t ] S
¢ wlz % +1 of -1

C——

whore the parametor n doponds on the socmispan, b,
through the reclation,

1 1 [3 lon Bt 1, _ B ]
» wilz2 Bn- 17 -

Tho image in tho t-plane of tho point at infinity of the

z-plano lios on tho imaginary axis at ’
t = 1 s ' ‘ )
whore s; is dofined by the relation, -
i R —_ =
, n =‘//1 + L .
cot sl -
The flow function in the t-plano corrosponding to fp(z) :;’
is ' -
. e
. 2¢ 81 1 -
Fo(t) = £5 [=z(t)] = = = (81)
(' (is,) t + B3 :

From equation (81), tho distribution of potontial along e
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the boundary (real axis) of the half t-plane is detormined,
and through equations (79) and (80), the corresponding po-
tential distribution along the bounding contour of the z-
plane. Eencse, ths 1i1f% distridbution,

dLop .
‘3_'5" = PY @z4 - %)

can be found from this graphical method, OCalculations have
been performed for the cases b =2 and b = 6 and the
rosults are illustroted in filgures 11 and 12, which also
show dLlF/dx (given by cquation (78)) as woll as tho to-
tal 1ift distridbution, d4Ly/dx, Thosc curves show that the

1if% on tho fuselage, givon by tho area under the curve for
dLF/dx in each case, 1s negative as can be demonstrated by
clementary considerations, Tho curves of figures 11 and

12 show tho valucs of d&Iyp/dx, dlLpogp/dx, and d4lLy/dx,
oach dividod by the convenient factor, 27 P ¥V ¢. Tho ac-
tual valucs in cach casc, of course, dopond on the total
1ift on the combination, and may be found from the rola-
tion,

2 PV ¢ = 2L/M(b,0)

The 1ift distridbution on the wings is found by the
same method oxcept that for tho wings only ¢, contrib-
uwtes to the 1lift, The results for b =2 and b = 6 aro
shown: in figuros 13 and 14, Theso distributions do not
diffor markedly from olliptic distributions.

Lift Distribution ovor Fusolage Width

It has boon shown that the 1ift on the fuselage 1is
negative in extroemo high-wing combinations with minimum
induced drag, From elementary considorations, onc is also
led to expect negative 11ft on the fuselage in similar com-
blnations with constant circulation, This case has already
been investigated by Lonnertz (roforence 5), who obtained
a poslitive fuselage 1lift. This result has been found to be
erroneous; the corrected analysls of thlis casc 1is preseonted
here in the eappondix,

For the sako of complotoness, the loading distribu-
tions over tho combindtion width have boon plotted to & con-
vonlent scale for oight difforent cases in figures 15, 16,
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17, and 18 to show the dependence of ths loading on the
wing height, the span length, and the distridbutlion of circu-
lation over the wing longth. Tho scalce in these diagrams

) is choson so that the maximum circulatlion, occurring at the
Taeom wing roots, is thc same in all cascs, The distributions
for oxtremo high-wing combinations with minimum: inducod
drag arc takom from tho preceding four figures, while those
for high-wing combinations with constant circulation. havo
boon plotted from tho rosults of the analysis in tho appen-
dix, .Tho other four cases for midwing combinations are 3
takon. from tho roesults of Lennortz. In these figures, the I
1ift distributions over the fuselage wldth for the high-
wing combinations are given by the curves lying below the
horizontal axis and inside the vertical lines marking the
fuselage width,
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As regards the load on the wings, the principal dif-
forence betwoon the oxtrome high-wing (or low-wing) combi-
nation and thoe midwing combination of tho same span length,
2b, is that tho formor pessess larger wing longth,

2(b - sin. B M) Thus, for a given total load on the combi-
nation.and a given span length, tho load on tho wings is
higher Ffor the extromo high-wing (or low-wing) combination,
tho morc so bocause for those combinations, the 11f%t on tho
fusolago is nogative so that thoe load on the wings 1s actu-
ally greator than the total 1ift on tho combination,
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Tho fundamontal difference botwoon tho extreme high-
wing (or low-wing) and midwing combinations 1s that in the
high- or low-wing cases, the fuselage 1l1ft is negative,
while in the midwing, it is positive, Thls interesting
result is indicated by tho curvos shown in figurc 19,
Thoso curvos show the dcpondonce of the ratio of fuseolage
1ift to total 1ift on the combination, that is, Ly/L, on
the somispan b for various types of combination. Tho
curves, A and B, for midwing combinations are taken from
the results of Lennertz; the curves, O0 and D, for ex-
treme high-wing combinations, are found, respectively, from
oquation (A-15) of the appondix and from the analysis of
this soction; the curve for a combinatiorn of internodiate
wing hoight with constant circulation has boen found fron.
equatiom (A-13) of tho appendix., _(The portinont valuos
for the curvo R are B 1w = 20,59, sin B = 0,350,
cos B i = 0.937.) Thoso curvos tond toward the value,
zoro, as b increasos indofinitely; thoso for the midwing
combinations change more slowly than the others. The rea-
son for this behavior is to be found in equation (A-18) of
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the appendix, For the midwing combination, Ly approaches
a finite 1limit as b becomes iInfinite, while in the case
of the extreme high-wing combination, Ly approaches zero,

The curves for interhkediatoe wing holghts will cross theo
axis in genoral (but see the following discussion); those
for the extreme high-wing and nldwing combina%ions do not,
Also, for the extreme high-wing and mldwing combinations,
LF/L is nunmerically largor in the case of ninimum induced

drag than in the case of constant circulatlon,

The amalysis prescnted in the appondix indicatos sonme
intoresting conclusions in the caso of intermcdiatec wing
hoights, For 1 > cos B w > 0, +tho 1ift distribution over

the fuselage 1is pasitive ovgr that portlom of the fusclago
lging botween tho vortical sections through tho wing roots
anid is negativoe over tho raost of the fusoclage. The tran-
eition in tho loading betwecon theso portions occurs by
moans of a Jump in theo distridbution, as shown later im
figure 23, Although tho distridbutions for these intormedi-
ate casecs have boen found analytically only for the case

of constant circulation (equations (A-8) and (A-9) of tho
appendix), a general consideration of the potentlial distri.
bution over the fuselage boundary shows that an exactly
similar result is obtained for intermediate wing helghts

in tho case of minimum induced drag. For tho ideal combi-
natlons considercd herein with any distribution of circu-
latdon, there is generally a jump in tho loading distribu-
tion in the vortical planc through the wing root whoso
magnitude is P ¥V I'y, whero PR is tho circulation at tho

root, Whothor tho fusolage 1lift is positive, nogative, or

zoro dopeonds on tho relative magnitudes of the areas under-

neath the soparato portions of the distribution: curvos;

and tho arcas, in turn, dopond on tho wing span, tho wing
hoight, and tho distribution of circulation along tho wings,
which may bo constant or be that corresponding to minimunm
induced drag, etc,

The circumstances under wuiich the fuselage 11ft van-
ishes are easily determined for the care of constant clr-
culation, From equation (4-12) of tho appondlx, let

b
L=29VI‘<sin - ):0
¥ B bE-l-GOSaBTT

If thie oquation is solved for b,
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by = sin B 1w, b2 = —> . sin B (82)
sin B 1r

The first solution 1ls trivial, for in this case the wing
longth, 2 (b - sin B m), vanishes so that the total 1ift
on the combination vanishes as well, The second solu-
tion 1s the desired relation., Flgurc 20 shows the depond-
cnce of this "ecritical somispan®" on sin B 1me The dashod
line of figuro 20 roprosents the oquation,

-
=
-

i i, oty w4

H
b =sin B m E
Tho point of interscctiom of the two curvos is found from =;
thoe ocquation, :
: 1

sin = e .. gin T :
B sin B m B : .

and lies at . —

sin Bn= /2/2 or B w= 45° 3

.

Tho graph shows that for f 7 2;45°, by < sin B 1wy, 1,04,

in this range, any wing span necessarily eoxceeds the crit-
. ical valus ang the fuselage 1ift 1s necessarily positive.
.4 85 For P m< 45 , the fuselage 1ift is positive, zero, or

1. negative, accordingly as b > b, b = by, sin pm < b < d,,
For the extrome high-wing (or low~wing) combination,

sin B =0 and bp 1is infinite, so that tho fuselago
1if%t is nogotive., In short, for wing helights such that _
B m > 45°, 4f tho wing span is incroased, tho fusolage g
lift.docroases numerically but remalns positive; for wing e
hoights such that B 7w < 45°, tho fusclage 1ift 1is ncga- 3
tive for sufflciontly small span and, as tho span incroases, -

.
Aalut TR

, possecs through theo valuo zoro whem b = b, and thon bo- - <=
i comes positive, The sccond case 1s 1llustratod by the .
curve E of figuro 19, S

LI

Finally, 1t shiould bo romarkcd that, if the combina~ B o
tlon is rogarded as a single structuro, the loading dis- :
tribution over the width of this structuro is continuoue
hrough tho root section., Tho roason for this result is

i i}

XY P N WA
i

PN e A

T
ks
R

ot that, at tho roots, the load por unit longth of tho wing ?
?’ passes from. P V PR to zoro; theso discontinuitios Jjust - X
iy balanco those in tho fusclage loading. In any casc, thoro 5
ig o ) e —— 3 ‘
Mt 4
g~
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will bo disconrtinuitios in the loading ovor the width of
any particular cross soctiom of the fusolage at tho verti-
cal scotions that pass through tho roots,

The analysis presentod in thls section will be pro-
foundly modifiod for combinations with different fuselage
cross soctions, PFor oxample, if tho soctions arc rectangu-
lar, it can be readlly scon that for the cxtremc high-wing
or low-wing combinations, in which the lifting line is
tangont to the uppor or the lowor surface, respectivoely,
the fuseolage 1ift is positive and that portion of the lift-
ing linc tangent to the fuselago ceases to act as a wing,
Thus, tho loading distributions of these combinations will
be totally differont from those of the corrosponding come
binations with circular fusclages, Tho disconnscted com-
binations with roctangular fuselagos will, howovor, be vory
similar to those wlth ecircular fusoclages, Rxpoerimoents
(roforonces 9 and 15) also roveal charactoristic diffor-
oncos arising from the shapo of tho fuselage cross scction,
Those difforences in actual combinations ariso from: causes
quito differcont from thosec doscribed hore,

Danlel Guggsanheim School of Aeronautics,
Wew York University,
New York, N. Y., November 1940,
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APPENDIX

HIGH- AND LOW-WING COMBINATIONS

WITH CONSTANT CIRCULATION

Again the combination shown in figure 2 is consldered
but now constant circulation over the 1ifting lines 1is as-
sumed, From the Pranditl theory, the vortex sheet in this
case dogenerates into a "horsoshoe vortex," so that the
flow in tho planc at 2 = + o 1is tkat arlsing from the
two vortex filaments tralling in straight lines from the
wing tips, with the fuselage cross socction as a boundary,
Tho flow in this planc is obtained By roflocting theso vor-
tices in the circle, so that the rosulting vortex system
has the form shown in figure 21. Tho vortices outside theo
circleo have the coordinates,

x=%b, y=ocos B (A-1)

and thoso ilnsido havo.thc coordinates,

x =% %5, vy = cosoa (A-2)

whore

c® = bv% 4+ cos® B m -  (A-3)

In order to find the 1lift distribution over tho fusoc-
lago soction, the rolation,

aL
a—.;]l=pv (@a-Qb)
Ll
is used. Tho potential distribution over tho fuselage is
found from oclomentary potontial theory,. but carec must de
takon in oxpressing it mathomatically because of its pmulti.
ple values, . The multiple values are avoided here by the
introduction of 2 cut in the z-plane between the two vor-
tices outside the cirele, It can be shown from simple
considerations that this cut must have tho form of tho pro-
Jection of the lifting line.on this plane, For the casec
considered here, the cut is a horizontal .stroight line, as
shownr in figure 21l..
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The potential fleld of the vortices outside the cir-~

'? cle is:

k5 ¢y = 5 [t“-l L0288 0 o tant Lo 20ef ﬁ:’
3 -1 b - .

s = 4 tan x 2b (y - cos

g 2 x° + (y -~ cos Bm) -0

ﬁ-%r Writing

Py (x,¥) = tan 2b_(y - cos fr)

=z 4 (y - cos Bmu)° - e

and restricting the tan™! function to its principal val-

- ues, -11/2 £ tan~! 68 < 1w/2, the single-valued expressiom
for this potential 1s:
\

@, -2% B (x,¥), 22 + (v - cos pm)® > 1°

!

-

'y

a a
o, = —%[nﬂ‘,(x.y)]. %+ (y-cos ) <b , ¥y = cos P 7 (4A-4)
Iy 2 2 ' B

: &, = B—Tr-[—'n'+1‘1 (x.Y)], x24(y-cos Bm)- X b , ¥ < cos prr
iy O Thus, for Izl > b, this potential is continuous in pass—
€ ing through ¥ = cos fm, while for |x} < b, it increas-
B es by I' 4in passing through this value,

J Similarly writing

i b

¥ 2 —z <? - EQEEEE)

c 'y
+ F (x,y) = tan 5 > ey
) 2 b .
g x+<y_sgi_g11>_?_ t
; c

1

With the same restriction on the tan function, the po- 4
tential of the image vortices can be written as %{
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2
Fa(x.y).xa+(y—%§1>22; )

—

2
a
m+Fy (x.y):l.x%(y- 395—;%’—'—) < GuyZeesful (ag)

(]

11
L)
I
!

e
)
¥ =

QB = -

a
2
8 g b 8
F—Tf-l'ra (xyy')} ’xa_'.(y_ =2 c TT) < GZ’yf 22 "CBETT'/

Thus, for Ixl > b/ca, this potential is continuous in
passing through” y = gg%g@u’ while for x| < b/e?®, it

3+

decreases by I' in passing through this value, 1In paf-
ticular, this potential is continuous on the circle,

The total potential 1is

® = Ql 4+ &4

and its distribution over the fuselage circle, | .

may be wrltten as

b = __I_: tan“l 22 (y - E_gs BTT)
1 + cos Bmw - b -~ 2¥ cos P

oh <y _ coié?n) |

2 (cos? Bn—ba)
+ £

- 2y cos B _|
c

where, if the tan~! functions are restricted to their’
principal values, the conditions given in equations (A-4)
and (A-5) must be employed. This distribution is discon-
tinuous at the coordinates, x = =* gin 1w, ¥y = cos 1,
which correspond to the wing roots, the potential increas-
ing by the value I', 1in passing upward through these
points, Therefore, the potential distribution can bo
written asa:
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} “l .. II >
- == |m+ 6], ¥ cos Pm (A-6)
_ D
; o = -é-n-[— T+ G—(y)], ¥y < cos Bm (A-7)

where

- 1
3 1 b (1 - E’)

G¢(y) = 2 tan T
2y - cos B (l + ’zj
c

In this expression, however, values of the tan™* function
are to be chosen so as to make G(¥) continuous over the
circle., From the equations, (A~8) and (A-7), the 1lift
distribution over the fuselage width is found to be:

dLy 1 -1 4b (ec? - 1) V1 - X%
—_—— = PYT}] 1 - — tan 5 5 = 5 ’
dx w ¢ +1-2(b -cos Bm) -~ 4c (l-x )

Ixt "< sin B m (A-8)
aLy 1 -1 4b (¢® - 1) /1 - x®
—i = P¥D = = tan < = = 5
dx g ¢ +1-2(b ~cos Brm) -~ 4c (1-x%)

Ix! > sin B 1 (A-9)

The error made by Lennertz (reference 5 in treating
thilis problem was apparently caused by hiis failure to sep-
arate the potential distribution over the fuselage surface
into distinct parts, se that he obtained squation (A-8) as
the 1ift distribution over the entire width,

These results for the 1lift distribution are readily
put into graphical form. Let

- ab (® - 1) V1 - <

Z E) z 2 )
¢ +1-2(b -cos Pmwr) - 4c (l-x )

1
==t
F(x) an

This function has the form shown in figure 22. Hence, if
(dLp/dx/pVD) 1is plotted against =x, the curve shown in

figure 23 is obtained. In the special case of the midwing
combination f{cos B m = 0), this distribution reduces to
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the form obtained by Lennertz, shown in figure 24, 1In the
case of the extreme high-wing (or 1ow-w1ng§ combination
(cos B = 1), the distribution reduces to the form showm
in figure 26, These last two distributions appoar in fig-
ures 16 and 18,

in order to find the 11f%t on tho fuselage, it is un-
necessary to inteograte the 11ift distribution as Lonneortz
has done, Instead, the total 1ift on tho combination is
found first. ZFrom equation (26),

L = PV R.Pof f(Z) dz

(=<}

Writing
z; = b + 1 cos B 7

the flow function in this case in:

— ? T___

T z z z + E% ;

f(z) = =—=| log -——f:i + log =

. 2mi zZ + %, . zq i
§ i = i3
) (._‘-_‘% — - .l
’ 2y + %73 i3
Z, + % 2 T

| = L) 10g (l - 2 Ll) 4 log |1+ = i
: 2mri z 4+ zy z, B

-5 [ A— _.2—- ¥
‘:" -i_ c =

P

e - —r—
T ——pT T

Expand in descending powers of (z + z;)
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Then
T ‘1
L=-pV R.PJ —— 2Db 1(-1 )
p {:Zni 2 + P }

PY T 2b (1‘3}"">

£

This expression for the 1ift is based on nondimensional
lengths; the dimensional relation is

L=pPV IR 2b (1-;%) (A-10)

whereo R 1is the fuselage radius, Thus, for the same cir-
culation and span length, the extreme high-wing (or low-
wing) combination has greater 1ift than the midwing combi-
nation, although for practical values of b, the differ-
ence is negligible; and, in either case, the 1ift does not
differ greatly from that of an isolated wing of the same
span,

The 1ift on the wings is:

Ly =PV I R2 (b~ sin B 1) (A-11)
Hence,
LF=L-LH=20VPR<sian-£§-} (A-12)
and
sin B 1 b:
.I.'l= b° + cos. B m (A-13)
L b b

2] 2
b + cos B
For .f.e midwing comblnation,

sin 8 m =1, cos Bw=20

and
(A-14)

This result is shown graphically by the curve B of figure
19, TFor the extreme high-wing (or low-winy) comblination,

sin B 7w = O, cos Bmw===1
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so that
Ly 1
—_—— = . A
% oE (4-15)

This result is shown by the ciurve 0 of figure 19,

al vy

The limiting case of infinite wing span is of special
interest, For this case, equation (A-12) reduces to

Ly =2 PVIRein p (A-16)

Thus, Dp vanishes for the extreme high-wing and low-wing R -4

combinations with infinlite wing span, while for the midwing ; A

combingtion, : 4 -
Ly =2 PVIR : (A1)

The general result, equation (A-16), signifies that for in- . Ia
finite span the 1ift on the combination is just the same &% -
ag i1f the wings were continuous through the fuselage and B
the fuselage removed, Tho particular result, equation

(A-17), was doriveod by Lennertz (referonco 5) by an in-

volved mathematical analysis and has since been verifisd -
by experiment (reference 1l1), T -2

The analysis presented here applies as well to dis- "; fi_
connected combinations, i1.e.,, those in which the wings de A
not intersect the fusolago but lie at some distance above .
or below it. If the nondimensional height of the 1lifting 3
line from the fusolage axis i1s ecallod h, it is roadily = A
soon from equations (A-10) and (A-13) that, in this case, E .4

L=2pVIRD (1 - —5-—}-——5-> (A-18) A=

1 : - i

a Lp=2PVIR ‘b(—h """"‘"'""") (A——lg) A -

so that T T
Ly 1 < vl

== T e cpe———— (A-20) PR -

L P +h -1 ot i

Thus, for such combinations, LF is always nogative - -
and vanlshes for infinite wing spon,

e 0
I

P "

e .

This thoorotical result agroes poorly with tho moa suro-
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ments of the forces acting on the separate members of dis-
connected combinations, In the tests of reference 12 it
was found that the interferenco 1lift forco on the fuselages
of disconnocted high-wing combinations were predominantly
positive, The reason for this poor agreement appears to
lie in the creatiom of a low-pressure region between wing
and fuselage by means of a venturl effect arising from the
finite profile of theo airfoil and the curvature of the
fusolage in side elovation. These quantities do not appear
in the first approximation of the theory used here, The
experiments also reveal (reference 12) tho presence of an
interference 1lift forcc acting on the wing, of which no¢ in-
dicatiom appears ian tho theory,

Flnally, the 1lifting-line theory yields another inter-
esting result for combinations with constant circulation,
It follows directly from the last analysis thagt the 1ift
distribution over the entire width of the combination,
that is, over both fuselage and wings, depends only on the
positions of the wing roots and wing tips and is entiroly
independent of the front elevation of the wings,

Other results of the application of the 1lifting-~line
theory to combinations with finlite fuselages have been
obtained by ¥, Vandrey (roeference 18).
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30
M(b,P)
.20
0
¢4 .
(b= 6 .
bs8
¢h=, . . -
-1.0 =5 o] 5
coafr
FIG.6.~ THE FUNCTION,M(bP) .
dbefdxy
2T pve

FiG.1l.- DISTRIBUTION OF LIFT OVER

FUSELAGE OF HIGH-WING ENSEMBLE,b=2.

Figs. 6,7,11,12

b=2
A
a2r
b=4
b S
_£b=8
rba8
L bEo L .0 .
-~1.0 -5 s} .5 1.0
cos B

FIG. 7.~ THE INTERFERENCE COEFFICIENT .

dLe/dx
21pve

.T

FIE.12.~ DISTRIBUTION OF LIFT OVER

FUSELAGE OF HIGH-WING ENSEMBLE, b= 6.
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FIG.13.~ DISTRIBUTION OF LIFT OVEP WINGS OF HIGH-WING ENSEMBLE, b=2. FI&.M.~ DISTRIBUTION OF LIFT OVER WINES
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HIGR-WING ENSEMBLE

Miriium DRAG

Figs. 15,16,17,18

HISH - WING ENSEMEBLE
COMSTANT CIRCULATION

MID"WING ENSEMBLE
miNiMuUM DRAG

MID-WING ENSENMBLE
CONSTANT CIRCULATION

FIG.15.~ LIFT DISTRIBUTION
OVER ENSEMBLE,

N

HIGH-WING ENSEMGLE

MINIMUM DRAG

FIGIE.—  LIFT DISTRIBUTION
QVER ENSEMBLE,
b=2,

—

MiD-WING ENSEMBLE
MNIMUM DRAG

HIGH ~WING ENSEMBLE
CONSTANT CIRCULATION

MID~WING ENSEMBLE
CONSTANT CIRCULATION

FIG.\7, — LIFT DISTRIBUTION
OVER ENSEMBLE,
b=6 L)

FIG.18.— LIFT DISTRIBUTION
OVER s:sfnm.s. 5
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e 5in for
e b i P b .l
Ce= &= = )ﬁ)
—— ///
\\\\ / cos Fﬂ- ////-;//
Q B )
L 4
6.2l ,— VORTEX SYSTEM GF HIGH-\/iG EMAEMALE
WITH CONSTANT CIACULATION
F) dLe/d
pvl
2t i'b; [ -—_
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-1 =ainfr o anfr | * -1 o I gle
FIG.24.-
LIFT DISTRIBUTION OVER FUSELAGE
Fig.22 ,~ DEPENDENCE OQF FIX)ON Xx. OF MID-WINGEMNSEMBLE .
dLefdxy
pvi dle/dx
Pv
__f/—_*_-
- 1=¥tan' 4bcasfw
O ¥ ‘:(C‘—E-dtos'h
| x 3 i in jiw L T’\ % ‘ 3 b
/ --t‘-rhn(é‘b -cqg:. 3 &
FiG.23.— Flg.25.-

LIFT DISTRIBUTION OQOYER FUSELAGE
FOR INTERMEDIATE WING HEIGHT,

LIFT DISTRIBUTION OVER FUSELAGE
OF EXTREME HIEH-WING ENSEMBLE .




